Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là các điểm trên cạnh AB, BC, CD, DA sao cho \(\dfrac{MA}{MB}=\dfrac{PD}{PC}\) và \(\dfrac{NB}{NC}=\dfrac{QA}{QD}\). Chứng minh: 4 điểm M, N, P, Q đồng phẳng
Cho tứ diện ABCD, gọi M là trung điểm của AC, trên cạnh AD lấy điểm N sao cho AN = 2ND, trên cạnh BC lấy điểm Q sao cho BC = 4.PQ. Gọi I là giao điểm của đường thẳng MN và mặt phẳng (BCD), J là giao điểm của đường thẳng BD và mặt phẳng (MNQ). Khi đó JB/ JD + JQ/JI bằng
Cho tứ diện ABCD. Lấy điểm S nằm ngoài mặt phẳng (ABCD). Gọi lần lượt G1, G2 là trọng tâm của tam giác SAB và tam giác SBD Chứng minh BD song song với mặt phẳng (SG1G2)
Cho tứ diện ABCD Gọi M N lần lượt là trung điểm của các cạnh BC và AC Trên cạnh BP lấy điểm P sao cho DP=2PB
a) xác định giao tuyến của mặt phẳng (MNP )và mặt phẳng (ABD) b) trên cạnh AD lấy điểm Q sao cho DQ=2QA. Chứng minh PQ song song với mặt phẳng (ABC)1. Cho tứ diện ABCD. Hai điểm M,N nằm trong tam giác ABC. Điểm P nằm trong tam giác ADB. Hãy xác định các giao tuyến của mặt phẳng MNP với các mặt khối của tứ diện ABCD.
2. Cho hình chóp S.ABCD. Trên cạnh SC lấy một điểm M không trùng với S và C.
a. Tìm giao điểm N của SD với mp ABM.
b. Giả sử AB,CD không song song, c/m AB, CD, MN đồng quy.
Cho hình chóp S.ABCD có đáy là hình bình hành. Lấy điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{MS}=\overrightarrow{0}\) . Mặt phẳng đi qua AM cắt SB, SC, SD thứ tự tại B' C' D'. Tính \(\dfrac{BB'}{SB'}+\dfrac{CC'}{SC'}+\dfrac{DD'}{SD'}\)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của:
a, AM và mặt phẳng (SBC)
b, MN và mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của: a, AM và mặt phẳng (SBC) b, MN và mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của: a, AM và mặt phẳng (SBC) b, MN và mặt phẳng (SAB)