Bạn tham khảo tại đây:
Vẽ đường cao BH⊥AC(H∈AC)
Trong △ BHC vuông tại H có BC2=BH2+CH2=BH2+(AC-AH)2=BH2+AC2-2AC.AH+AH2
Trong △ ABH vuông tại B có AH2+BH2=AB2 và AH=AB.cosA hay AH=c.cosA
Suy ra BC2=AC2+AB2-2AC.c.cosA hay a2=b2+c2-2bc.cosA
Bạn tham khảo tại đây:
Vẽ đường cao BH⊥AC(H∈AC)
Trong △ BHC vuông tại H có BC2=BH2+CH2=BH2+(AC-AH)2=BH2+AC2-2AC.AH+AH2
Trong △ ABH vuông tại B có AH2+BH2=AB2 và AH=AB.cosA hay AH=c.cosA
Suy ra BC2=AC2+AB2-2AC.c.cosA hay a2=b2+c2-2bc.cosA
1. Cho ABC là tam giác vuông tại A. Tìm các tỉ số lượng giác của góc B trong các trường hợp sau:
a) BC = 5 cm; AB = 3 cm;
b) BC = 13 cm; AC = 12 cm;
c) BC = 5V2 cm; AB = 5 cm;
d) AB = a v3; AC = a.
Bài 1.Cho tam giác ABC, biết BC = 7,5 cm, CA= 4,5cm, AB= 6cm a. Tam giác ABC là tam giác gì? Tính đường cao AH của tam giác ABC ; b. Tính độ dài các đoạn thẳng BH, CH.
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
Cho tam giác ABC vuông tại A đường cao AH phân giác AD biết BC = 5 cm DC = 20 cm Tính độ dài AB AC HB HC và diện tích tam giác AHD
Cho tam giác ABC nhọn có BC=a và H là trực tâm. Tia BH, CH theo thứ tự cắt AC,AB tại M,N
a)CM; ∠AMN=∠ABC
b)CM: \(BH\cdot BM+CH\cdot CN=a^2\)
c)Giả sử ∠MHN=120o. Tính AH và MN theo a
d)CM: \(\sin B\cdot\sin C-\cos C\cdot\cos B=\cos A\)
e)Giả sử∠A=2∠B.CM:\(AC^2+AB\cdot AC=a^2\)
Cho Tam giác ABC vuông tại A đg cao AH .Biết AB=12cm AC =16 cm . Phân giác BD của gócb cắt AH tại D a, tính DH b, phân giác AN của góc a cắt BC tại n Tính DIỆN TÍCH TAM GIÁC AHN
Cho tam giác ABC vuông tại A có AH là dường cao. Gọi I,K lần lượt là hình chiếu của H lên AB và AC. Biết BC= 10 cm; AH = 4 cm
CMR a AH=IK
b AB.AI= AK. AC