Cho tam giác ABC vuông tại A, đường cao AH. Trên tia BC lấy điểm D sao
choBD BA . Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng:
a) Điểm H nằm giữa B; D.
Page 15
b) BE là đường trung trực của đoạn AD.
c) Tia AD là tia phân giác của góc HAC.
d) HD DC
Cho tam giác ABC nội tiếp đường tròn (O), đường phân giác A^ cắt đường tròn tại P, đường cao AH cắt BC ở H. C/m
a) OP // AH
b) AP là tia phân giác OAH^
Mn giúp mk luôn tối nay nhá 😙
Bài 1: Cho ABC vuông tại A có đường cao AH. Biết AB = 20cm, AC = 15cm. a) Chứng minh: ABC HBA.Tính độ dài BC, AH b) Qua C vẽ đường thẳng song song với AB và cắt AH tại F. Chứng minh: AC2 = AB. FC c) Gọi I ; J lần lượt là trung điểm AB và CF. Chứng minh: I ; H; J thẳng hàng
Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Giúp mik với mik đang cần gấp
Cho tam giác ABC vuông tại A và tia phân giác BD. Kẻ DE vuông góc BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) AB = BE
b) Tam giác CDF cân
c) AE // CF
1) Cho tam giác ABC cân tại A, có M,N,P lần lượt là trung điểm AB, AC, BC
a) C/m: MN // BC và tứ giác BMNC là hình thang cân.
b) Gọi Q là điểm đối xứng của M qua N, C/m: Tứ giác AMCQ là hình bình hình
c) C/m: Tứ giác AMPN là hình thoi
d) Gọi K là điểm đối xứng với P qua M. C/m \(\widehat{AKB}\) = \(90^O\)
2) Cho Δ ABC vuông tại A (AB < AC). Gọi E, F, K lần lượt là trung điểm của AB, AC, BC
a) C/m: Tứ giác EFCK là hình bình hành
b) Gọi M là điểm đối xứng của K qua E. C/m: tứ giác AFBM là hình thoi.
c) Gọi I là giao điểm của EF và AK. C/m: M, I, C thẳng hàng.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Gọi I là trung điểm của BC. Tìm tọa độ điểm D sao cho tứ giác ABID là hình bình hành.
cho tam giác ABC có A(1;3), B(-2;6), C(9;8)
tìm tọa độ trực tâm, tâm đường tròn ngoại tiếp, tâm đường tròn nội tiếp tam giác ABC