a: Ta có: ΔBDC vuông tại D
mà DO là đường trung tuyến
nên DO=BC/2
a: Ta có: ΔBDC vuông tại D
mà DO là đường trung tuyến
nên DO=BC/2
Cho ΔABC (AB<AC). AE là tia phân giác góc BAC (E ϵ BC). Trên cạnh AC lấy điểm M sao cho AM=AB.
a) Chứng minh ΔABE=ΔAME.
b) AE cắt BM tại I. Chứng minh I là trung điểm của BM.
c) Trên tia đối của tia EM lấy điểm N sao cho EN=EC. Chứng minh ΔENB=ΔECM.
d) Chứng minh ba điểm A,B,N thẳng hàng.
Câu 2: Cho tam giác ABC, M là trung điểm của cạnh AC. Trên tia đối của tia MB, lấy điểm E sao cho MB = ME
a) CM: AE = BC
b) CM: AE // BC
c) Gọi N là trung điểm của cạnh AB. Trên tia đối tia NC, lấy điểm F sao cho NC = NF. CMR: A là trung điểm của EF.
Bài 8 : Cho △ABC có AB = AC. Trên tia phân giác của góc A cắt cạnh BC tại D.
a) CMR : △ABD = △ACD
b) Kẻ DI ⊥ AB tại I, DK ⊥ AC tại K. CMR : DI=Dk; góc IDB = góc KDC
c) IK//BC
Bài 9 : Cho △AOB. Trên tia đối của tia OA lấy điểm C sao cho OC = OA, trên tia đối của tia OB lấy điểm D sao cho OD = OB
a) Chứng minh AB // DC
b) M là một điểm nằm giữa A và B. Tia MO cắt CD ở N, CMR : OM = ON
c) Từ M kẻ MI ⊥ OA, từ N kẻ NF ⊥ OC. CMR : MI = NF
Bài 10 : Cho Δ ABC có AB = AC, kẻ BD ⊥ AC, CE ⊥ AB ( D ∈ AC, E ∈ AB). Gọi O là giao điểm của BD và CE. Chứng minh :
a) BD = CE
b) ΔOEB = ΔODC
c) AO là tia phân giác của góc BAC
d) CMR : AO đi qua trung điểm của BC
Bài 1: Cho tam giác ABC có AB=AC, kẻ Ah ⊥ BC tại H.
a) So sánh độ dài hai đoạn thẳng BH và CH;
b) Biết AH = 12cm và BH = 5cm, tính AB;
c) Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho
BD=CE. Kẻ DM ⊥ BC tại M, kẻ En ⊥ BC tại N. Chứng minh BM = CN và tam giác
AMN cân.
Bài 2: Cho tam giác ABC có AB = AC và tia phân giác góc A cắt BC ở H.
a) Chứng minh △ABH=△ACH . b) Chứng minh AH ⊥ BC.
c) Vẽ HD ⊥ AB (D ∈ AB) và HE ⊥ AC (E ϵ AC) . Chứng minh DE // BC.
Bài 3: Cho tam giác ABC có AB = AC, E là trung điểm BC, trên tia đối của tia EA lấy điểm
D sao cho AE = ED.
a) Chứng minh: △ABE = △DCE. b) Chứng minh: AB // DC.
c) Chứng minh: AE ⊥ BC. d) Tìm điều kiện của △ABC để ∠ADC = 45 độ
Giúp mình vs ạ UwU
Cho tam giác abc cân tại a trên cạnh BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM=CM, các đường thẳng vuông góc với BC kẻ từ M và N cắt AB và AC lần lượt tại D và E, đương thẳng DE cắt BC tại I. Gọi O là giao điểm của đường phân giác góc A với đường thẳng vuông góc với AC tại C. CMR: a, DM=EN b, I là trung điểm của DE c,Tam giác BAC=Tam giác COE d, OI vuông góc với DE
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
CMR
a, I là trung điểm của DE
b, Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC cân tại A. Lấy M, N lần lượt là trung điểm AB, AC. Trên tia đối của tia MC lấy D sao cho DM = MC. Trên tia đối của tia NB lấy E sao cho EN = NB.
a) CM: tam giác ANE = tam giác CNB và suy ra AE // BC
b) CM: tam giác AMD = tam giác BMC.
c) CM: D; A ; E thẳng hàng.
d) CM: DB = EC
e) Lấy K là trung điểm BM. Lấy F thuộc tia đối KC sao cho FK = KC.
(Vẽ hình, chú thích đầy đủ giúp mình nha)