a, Xét tam giác ABC cân tại A, có M là trung điểm
=> AM là đường trung tuyến đồng thời là đường phân giác ^A
b, Theo định lí Pytago tam giác AMC vuông tại M
\(AC=\sqrt{AM^2+MC^2}=10cm\)
Ta có BC = 2MC = 12 cm
a, Xét tam giác ABC cân tại A, có M là trung điểm
=> AM là đường trung tuyến đồng thời là đường phân giác ^A
b, Theo định lí Pytago tam giác AMC vuông tại M
\(AC=\sqrt{AM^2+MC^2}=10cm\)
Ta có BC = 2MC = 12 cm
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác. Kẻ MK vuông góc với BC tại K.
a) Tính độ dài cạnh BC.
b) CM: AM=KM.
c) Kẻ AD vuông góc vs BC tại D. CM: Tia AK là tia phân giác của góc DAC.
d) CM: AB+AC<BC+AD.
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
cho tam giác ABC ,D là trung điểm của BC.Ax là tia phân giác của góc A.Qua D vẽ DI vuông góc với Ax tại I,DI cắt AB,AC lần lượt tại M,N.BE//AC(E thuộc MN) a) chứng mminh BE=NC b)BM=CN c) biết AC =10Cm,AB=6cm.Tính AM,BM
Cho tam giác ABC cân tại A có AB = AC = 10 cm;BC = 12 cm.Kẻ AH vuông góc với BC. a) Chứng minh HB = HC;tính AH. b) kẻ Bx vuông góc với AB tại B; Cy vuông góc với AC tại C; Bx và Cy cắt nhau tại M. chứng minh AM là tia phân giác của góc BAC và suy ra A,H,M thẳng hàng. c)kẻ HK song song với MB(K thuộc MC) Trên tia HM lấy điểm O sao cho OM = 2OH. Chứng minh ba điểm B,O,K thẳng hàng
Cho tam giác ABC có ba góc nhọn. (AB<AC). Gọi D là trung điểm của cạnh AC. Trên tia đối của tia DB lấy điểm M sao cho DM=DB
a) Chứng minh: Tam giác ADB=Tam giác CDM
b) Chứng minh AB//CM
c)Chứng minh AM=BC
d) Trên tia MC lấy điểm N sao cho C là trung điểm của MN.Chứng minh AC//BN
e)Gọi I,K lần lượt là trung điểm của AB và CM. Chứng minh: ba điểm K,D,I thẳng hàng
cho tam giác ABC có AB=AC. Lấy M thuộc AB và N thuộc AC sao cho AM=AN. Gọi O là giao điểm của BN và CM.
a, Chứng minh tam giác ABN bằng tam giác ACM b, Chứng minh góc BMC bằng góc BNC vàOB=OC c, Gọi F là trung điểm của BC. Chứng minh A, O, F thẳng hàngCho tam giác ABC vuông tại A có góc B=60 độ. Trên cạnh BC lấy điểm D sao cho BA = BD. Tia phân giác của góc B cắt AC tại I
a. Cm: tam giác BAD đều
b. Cm: tam giác IBC cân
c. Cm: D là trung điểm của BC
d. Cho AB=6cm. Tính BC,AC
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC
Cho tam giác ABC và điểm M thuộc cạnh BC thỏa mãn tam giác AMB=tam giác AMC. Chứng minh rằng:
a)M là trung điểm của BC
b)Tia AM là phân giác của góc BAC và AM Vuông góc BC