Cho tam giác ABC vuông ở A có góc C = α (α < 45° ) trung tuyến AM, đường cao AH. Biết BC=a, AC=b, AH=h
a, Tính Sin α , Cos α , Sin 2α theo a,b,h
b, Chứng minh: Sin 2α = 2Sin α . Cos α
Tam giác ABC nhọn có BC = a ; đường cao AH ; góc B = alpha ; góc C = beta. Tính độ dài AH theo a, alpha, beta.
Cảm ơn mng rất nhiều ạ!
Cho \(\Delta\)ABC vuông tại A (AB < AC) đường cao AH và trung tuyến AM, đặt góc ACB =\(\alpha\). Chứng minh sin2\(\alpha\)= sin\(\alpha\) . cos \(\alpha\)
cho tam giác ABC vuông tại A, AB<AC, góc C=α<45o, đường trung tuyến AM, đường cao AH, MA=MB=MC=a. c/m:
a) Sin2α=2sinα.cosα
b) 1+cos2α=2cos2α
c)1-cos2α=2sin2α
1) Chứng minh các hệ thức : a) 1+ \(\tan^2_{\alpha}\)=\(\dfrac{1}{\cos^2_{\alpha}}\)
b) \(\dfrac{\cos_{\alpha}}{1-\sin_{\alpha}}\)=1+\(\dfrac{\sin_{\alpha}}{\cos_{\alpha}}\)
2) Cho tam giác ABC vuông tại A , đường cao AH, HD , HE lần lượt là đường cao của của AHB và AHC .
Chứng minh rằng : a) \(\dfrac{AB^2}{AC^2}\) = \(\dfrac{HB}{HC}\) b) \(\dfrac{AB^3}{AC^3}\)= \(\dfrac{DB}{EC}\)
3) Cho tam giác ABC cân tại A , đường cao AH và BK . Chứng minh rằng :
\(\dfrac{1}{BK^2}\)= \(\dfrac{1}{BC^2}\)+ \(\dfrac{1}{4AH^2}\)
Chứng minh rằng khi góc \(\alpha\) nhọn thì :
a) \(\sin2\alpha=2\sin\alpha\cos\alpha\)
b) \(\cos2\alpha=1-2\sin^2\alpha\)
Dùng định nghĩa tỉ số lượng giác trong tam giác vuông để chứng minh rằng :
1+ Cos2α = 2Cos2α
cho tam giác ABC vuông tại A , góc C =\(\alpha\) <45 độ cho biết đường cao AH =h đường trung tuyếnAM =m và BC =a , AB =c , CA =b
cmr a, sin2 \(\alpha\) =\(\frac{1-cos^2\alpha}{2}\)b, cos2 \(\alpha\) = \(\frac{1+cos^2\alpha}{2}\)
Cho tam giác ABC cân tạiA,đường cao BH=a,góc ABC=alpha. a,tính các cặp cạnh và đường cao còn lại. b,tính bán kính đường trong nội tiếp và đường trong ngoại tiếp tam giác abc