cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC ( A = 90 độ ), phân giác của góc ABC cắt AC tại D, lấy điểm E trên BC sao cho
CMR:
a) Tam giác ABC = Tam giác EBD
b) DE vuông góc với BD
c) BD là đường trung trực của AE
cho tam giác ABC cân ở A . trên cạnh BC lấy điểm D . trên tia đối của tia CB lấy điểm E sao cho BD = CE . từ D kẻ đường vuông góc với BC cắt AB ở M . từ E kẻ đường vuông góc với BC cắt AC ở N
a] CMR : MD = NE
b]MN cắt DE ở I : CMR : I là trung điểm của DE
c] từ D kẻ đường vuông góc với AC . từ B kẻ đường vuông góc với AB chúng cắt nhau tại O . CMR AO là đường trung trực của BC
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
baì 1 : cho tam giác ABC tia phân giác của góc B và C cắt nhau ở I . biết góc BAC = 70 độ tính BIC
bài 2: từ đề bài 1 , vẽ tia phân giác của góc ngoài tại đỉnh C của tam giác ABC là tia Cy . kéo dài BI cắt CI tại K . tính BKC
cho tam giác ABC VUÔNG Tại A . gọi I là trung điểm của bc . trên tia đối của IA lấy điểm D sao chi ID=Ia
a) chứng minh rằng tam giá BID = tam giác CIA
b) CMR BD vuông góc AB
c) qua a kẻ đường song song với BC cắt đường thẳng BD tại M. chứng minh. tam giác BAM= tam giác ABC
d) chứng minh rằng AB là phân giác của góc DAM
Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.
Cho tam giác ABC . Ở miền ngoài tam giác ABC , vẽ hai tam giác ABD và tam giác ACE là tam giác vuông tại A và có AD = AB , AE = AC . Gọi H là chân đường vuông góc kẻ từ A xuống BC và M là trung điểm của BC . Tia HA cắt DE tại K , tia MA cắt DE tại I . CMR :
a.AI vuông góc với DE
b.KD = KE