a: Xét ΔEAD có \(\widehat{EAD}=\widehat{EDA}\)
nên ΔEAD cân tại E
b: Xét ΔABC có AD là phân giác
nên DC/DB=AC/AB(1)
Xét ΔABC có DE//AC
nên DE/BE=AC/AB(2)
Từ (1) và (2) suy ra DC/DB=DE/BE
hay \(DC\cdot BE=DE\cdot BD\)
a: Xét ΔEAD có \(\widehat{EAD}=\widehat{EDA}\)
nên ΔEAD cân tại E
b: Xét ΔABC có AD là phân giác
nên DC/DB=AC/AB(1)
Xét ΔABC có DE//AC
nên DE/BE=AC/AB(2)
Từ (1) và (2) suy ra DC/DB=DE/BE
hay \(DC\cdot BE=DE\cdot BD\)
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.
Cho tam giác abc có AB = 3cm, BC = 7cm, BD là đường phân giác (D thuộc AC). Kẻ AH, CK vuông với BD.
a) Chứng minh tam giác AHD ~ tam giác CKD.
b) Chứng minh Ad.BK = BC.BH.
c) Qua trung điểm I của AC kẻ đường thẳng song song BD cắt BC tại M, cắt tia AB tại N. Chứng minh AN = CM.
d) Chứng minh Sabc = 5Sbdi
Cho tam giác ABC vuông tại A, AB < AC. AB= 3cm, AC= 4cm. Đường phân giác BD.
a, Tính BC, AD, CD
b, Qua D kẻ đường thẳng song song với AB cắt BC tại K. Chứng minh: BK.BC = AB.CK
c, Qua D kẻ đường thẳng vuông góc với BD cắt BD, AB và đường thẳng AC lần lượt tại E,G,H. Chứng minh \(\dfrac{CH}{BH}=\dfrac{KD}{AG}\)
cho tam giác abc kẻ đường thẳng song sonng bc cắt ab ở d và cắt ac ở e qua c kẻ cx song song ab cắt de ở g goi h là giao điểm ac , bg kẻ hi song song ab ( i thuộc bc ) chứng minh rằng :
a) AD.EG=BD.DE
B) HC^2=HE.HA
C) 1/HI=1/AB+1/CG
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC.
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.
Tam giác ABC đường trung tuyến AM. Từ một điểm D bất kì trên cạnh AB vẽ đường thẳng song song với BC cắt AM, AC lần lượt tại I và E. Biết cạnh AB = 7cm, AC =10cm, AD = 3cm.
Tính AE.
Chứng minh: DI/CM=IE/BM và suy ra I là trung điểm của DE.
Gọi O là giao điểm của BE và DC. Chứng minh: O thuộc đường thẳng AM.
Kẻ ON // BC ( N thuộc EC) chứng minh: 1/ON = 1/DE + 1/BC.
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC có AB = 6cm, AC = 9cm, BC = 12cm. Trên cạnh AB lấy điểm D sao cho AD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 3cm.
a) Chứng minh tứ giác BCED là hình thang
b) Tính DE.
c) Gọi O là giao điểm của BE và CD. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt BD, CE lần lượt tại I và K . Chứng minh OI = OK.
d) Chứng minh: \(\frac{ID}{BD}+\frac{KC}{EC}=1\)