Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC).
a, Biết AB=12cm, BC=20cm. Tính AC, AM, góc ABC.
b, Kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM AN.AC=AC^2 - HC^2.
c, CM AH=MN, AM.MB+AN.NC=AH^2.
d, CM tan^3C=BM/CN.
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC).
a, Biết AB=12cm, BC=20cm. Tính AC, AM, góc ABC.
b, Kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM AN.AC=AC^2 - HC^2.
c, CM AH=MN, AM.MB+AN.NC=AH^2.
d, CM tan^3C=BM/CN.
mk cần phần d ak, cảm ơn trước!
Cho tam giác ABC nhọn . Vẽ đường tròn đường kính BC cắt AB tại M , AC tại N .
a. Chứng minh BN vuông với AC , CM vuông góc với AB.
b. Gọi H là giao điểm của BN và CM. Chứng minh AH vuông với BC.
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
Cho tam giác nhọn \(ABC\) (AB<AC) nội tiếp đường tròn (O), trực tâm H, đường cao AE. Gọi M là trung điểm của BC. Đường thẳng vuông góc với MH tại H cắt AB và AC theo thứ tự tại I và K. J là một điểm thuộc đoạn AE sao cho góc BJC=90.
a) CMR: HI=HK
b) CMR: dt(\(BJC \))^2 = dt(ABC).dt(HBC)
c) Gọi Q là một điểm trên (O) sao cho góc AQH=90. CMR 3 điểm Q,H,M thẳng hàng