tam giác ABC. M bất kì trong tam giác kẻ MD vuông BC , MK vuông Ab;MH vuông AC. Gọi h A, h B, h C là các đường cao từ A, B , C của tam giác ABC. Tính MD/hA+MH/hB+MK/hC
Cho tam giác ABC có O là giao điểm của ba đường phân giác, M là trung điểm của cạnh BC, đường cao AH cắt OM ở E, kẻ OD vuông góc với BC Chứng minh AE = OD
Cho ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2BM/AN =BN/CN và góc BNM = góc ANC . Gọi P là trung điểm AM,Q là giao điểm AN và CP.Chứng minh:
a,MN // CP
b, Tam giác AQC cân tại Q
c, Tam giác ABC vuông tại C
Cho tam giác ABC vuông tại A và M là trung điểm cạnh BC. kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC)
a)chứng minh tứ giác ADME là hình chữ nhật
b)gọi P là điểm đối xứng của M qua D; Q là điểm đối xứng của M qua E . Chứng minh tứ giác PAMB là hình thoi
c)P đối xứng với Q qua A
Cho tam giác ABC vuông ở A và có BC = 2 AB = 2a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều ACG
a) Tính các góc B, C cạnh AC và diện tích tam giác ABC
b) Chứng minh rằng FA vuông góc với BE và CG. Tính diện tích các tam giác FAG và FBE
c) Tính diện tích tứ giác DEFG
Cho tam giác ABC vuông ở A, AB < AC, trung tuyến AM. Gọi O là trung điểm của AM. Lấy D đối xứng với B qua O.
a) Chứng minh tứ giác ABMD là hình bình hành.
b) Chứng minh tứ giác AMCD là hình thoi.
c) Kẻ AH vuông góc với BC. Gọi K là giao điểm của DM với AC, N là trung điểm của AB. Chứng minh tứ giác NHMK là hình thang.
d) Chứng minh \(\widehat{NHK}\) = 90o
Trong tam giác vuông ABC (∠C = 90◦ ), các điểm K, L và M lần lượt nằm trên các cạnh AC, BC và AB sao cho AK = BL = a, KM = LM = b và ∠KML = 90◦ . Chứng minh rằng a = b