Cho Δ ABC vuông tại A có BD là phân giác của \(\widehat{ABC}\) (D∈AC). Kẻ DE ⊥ BC (E∈BC). Gọi F là giao điểm của BA và ED.
a) Chứng minh Δ ABD = Δ EBD
b) Chứng minh AD < DC
c) Chứng minh \(\widehat{ADF}=2\widehat{ABD}\)
Cho ΔABC cân tại A. D là điểm bất kì nằm bên trong tam giác sao cho \(\widehat{ADB}>\widehat{ADC}\).CMR DC > DB
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối tia IB lấy điểm D sao cho ID=IB.
a) Chứng minh: tam giác IAB= tam giác ICD
b) Gọi M là trung điểm BC. AM cắt BI tại G
Chứng minh: BG= 2/3 ID
c) Gọi N là trung điểm CD. AN cắt DI tại K. Chứng minh: BG=GK=KD
cho tam giác ABC có AB< AC và AD là tia phân giác góc D (D thuộc BC) . Kẻ AH vuông góc với BC ( H thuộc BC ) và gọi M là trung điểm của BC . Chứng minh rằng : Tia AD nằm giữa hai tia AH và AM
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
cho tam giác tam giác abc có a=90 độ bd là phân giác của góc b d thuộc ac trên bc lấy điểm e sao cho ab=be
a chứng minh da=de
b __________ae vuông góc bd
c___________góc edc=góc abc
d___________nếu tam giác abc =60 độ thì ae=ce
e___________trên tia đối tia ab lấy i sao cho ai=ec chứng minh bd đi qua trung điểm ic
Cho tam giác cân ABC (AB=AC) .Gọi D là trung điểm của BC, từ D hạ DE, DF vuông góc với Á theo thứ tự AC. Chứng minh:
a) tam giác AED = tam giác ÀD vuông góc vơi AB, AC theo thứ tự (E thuôc AB, F thuộc AC). Chứng minh:
a) tam giác AED= tam giác AFD và AD là trung trực của đoạn thẳng EF
b) Trên tia đối tia DE lấy điểm K sao cho DK=DE. Chứng minh tam giác EKC vuông
c) So sánh BF và EK
Cho tam giác ABC cân(AB=AC). Các đường phân giác BE,CF cắt nhau tại H. a)chứng minh tam giác ABE=tam giác ACF b)tia AH cắt BC tại D.chứng minh D là trung điểm BC và EF//BC c)chứng minh AH là trung trực của EF.so sánh HF và HC d)tìm điều kiện của tam giác ABC để HC=2HD