a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
=>H,O,D thẳng hàng
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
=>H,O,D thẳng hàng
Cho tam giác ABC nhọn có trục tâm H. Các đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, D thẳng hàng.
c) Chứng minh 4 điểm A, B, D, C cách đều một điểm.
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi.
Cho tam giác vuông ABC tại A ( AB < AC) ,E là trung điểm của BC. Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O giao điểm của AE và DF.
a) Chứng minh tứ giác ADEF là hình chữ nhật
b) Gọi K là điểm đối xứng của E qua D.Chứng minh tứ giác AECK hình thoi
c) Chứng minh rằng ba điểm B,O,K thằng hàng/Kẻ EM vuông góc với AK tại M.Chứng minh rằng DMF = 90 độ
d) Kéo dài BD cắt KC tại I, cho AB = 3cm , AC = 4cm.Tính độ dài KI Giúp với mn mai nộp rồi
Cho ∆𝐴𝐵𝐶nhọn. Gọi H là trực tâm của tam giác. M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.a. Chứng minh: Tứ giác BHCD là hình bình hành.b. Chứng minh: Tam giác ABDvuông tại B, tam giác ACD vuông tại C.c. Gọi I là trung điểm của AD. Chứng minh: IA =IB =IC =ID
Cho tam giác ABC .Trực tâm H, các đường thẳng vuông góc AB tại B, A vuông góc AC tại C. Cắt nhau tại D
a, Chứng minh: BDHC là hình bình hành
b, Chứng minh: Góc BAC + Góc BDC =180°
c, Gọi M là trung điểm của BC. Chứng minh HMN thẳng hàng
Cho tam giác vuông ABC, vuông tại A, đường cao AH . Qua H kẻ đường thẳng vuông góc với AB tại E , vuông góc với AC tại F
1/ Tứ giác AEHF là hình gì?Vì sao
2/ Gọi O là trung điểm của HC . Chứng minh E đối xứng với F qua O
3/ Gọi M là trung điểm của HC.Kẻ MI song song AH(I thuộc AC) , gọi K là điểm đối xứng của I qua M
a) Tính độ dài HI biết AC =5cm
b) CM:HICK là hình thoi
c) Cm: BO vuông góc với AM
Cho hình bình hành ABCD (AD<AB) Kẻ AH và CI vuông góc với BD. Gọi M là trung điểm của HI
a, Tứ giác AHCI là hình gì? Vì sao?
b,Chứng minh A đối xứng với C qua M
c, Đường thẳng đi qua D vuông góc với BC cắt CI tại N. Chứng minh AB vuông góc với BN
cho tam giác ABC có 3 gọc nhọn AB<AC các đường cao BE,CF cắt nhau tại H gọi M là trung điểm BC , K là điểm đối xứng với H qua M a,chứng minh tứ giác BHCK là hình bình hànhb, BKvuông góc với AB và CK vuông góc với ACc, gọi I là điểm đối xứng với H qua BC . chứng minh tứ giác BIKC LÀ hình thang când, Bk cắt HI ở G tam giác ABC phải cs thêm điều kiện gì để tứ giác GHCK là hình thang cân
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi D là điểm đối xứng của A với H, đường thẳng kẻ qua D song song với AB cắt BC và CA lần lượt ở M và N. a) Tứ giác ABDM là hình gì? Vì sao b) Chứng minh M là trực tâm của tam giác ACD c) Gọi I là trung điểm của MC. Chứng minh góc HNI vuông
Cho tam giác ABC cân tại A có D là trung điểm cạnh BC. Gọi E là điểm đối xứng của A qua D.
a) Chứng minh: Tứ giác ABCE là hình thoi.
b) Từ C kẻ đường thẳng vuông góc với BC cắt tia BA tại F.
Chứng minh: tứ giác AECF là hình bình hành.
c) Gọi N là trung điểm của CF, kẻ CH vuông góc với AB tại H.
Chứng minh: tam giác DHN là tam giác vuông.
Giúp mình hộ với ạ! Mình đang cần gấp lắm!! :((
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥ AB và CK ⊥ AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.