Hãy vẽ một tam giác ABC với trung tuyến AD, BE, CF, rồi chỉ ra các bộ ba vectơ khác và đôi một bằng nhau (các vectơ này có điểm đầu và điểm cuối được lấy trong sáu điểm A, B, C, D, E, F). Nếu G là trọng tâm tam giác ABC thì có thể viết hay không? Vì sao?
cho tam giác ABC M là trung điểm của cạnh AB , N là trung điểm của cạnh BC Chứng tỏ các đoạn MN, NP và BM chia tam giác ABC thành 4 phần có diện tích bằng nhau
B biết rằng AB , BN và CM cắt nhau tại điểm O chứng ỏ rằng OA gấp đôi đoạn OB
C Gọi I là một điểm nằm trên BC và đoạn BI gấp 3 lần đoạn IC người ta kéo dài đoạn IC người ta kéo dài đoạn ơi một đoạn bằng đoạn NY 1 doạn NY IK bằng đoạn NI gọi tam giác ABC là a Hãy tính diện tích tam giác bnk theo a
Cho tam giác ABC nội tiếp đường tròn tâm O, H là trực tâm của tam giác ABC, B' là điểm đối xứng với B qua O.
CM: \(\overrightarrow{AH}=\overrightarrow{B'C}\)
Cho tam giác ABC nội tiếp đường tròn tâm O, H là trực tâm của tam giác ABC, B' là điểm đối xứng với B qua O.
CM: \(\overrightarrow{AH}=\overrightarrow{B'C}\)
Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Tính AM?
1. Cho tam giác ABC ,H là trực tâm. M,N,E,F là trung điểm của AB,AC,HB,HC. Chứng minh vecto MN =vecto EF
2. Cho 2 hình bình hành ABCD,ABEF (B,C,E không thẳng hàng) . Chứng tỏ vecto CD=vecto EF, vecto CE=vecto DF.
3. Cho tam giác ABC nội tiếp đường tròn (O) đường kính AD, H là trực tâm.K là đối xứng của O qua BC. Chứng minh vecto BH=vecto DC, vecto AH=vecto OK
Cho tứ giác ABCD. Gọi M, N, P và Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh \(\overrightarrow{NP}=\overrightarrow{MQ}\) và \(\overrightarrow{PQ}=\overrightarrow{NM}\) ?
Gọi G là trọng tâm của tam giác ABC. Vẽ \(\overrightarrow{AD}=\overrightarrow{BC},\overrightarrow{DE}=\overrightarrow{GB}\)
CMR: \(\overrightarrow{GE}=\overrightarrow{0}\)
Cho tam giác ABC. Các điểm M và N lần lượt là trung điểm các cạnh AB và AC. So sánh độ dài của hai vectơ \(\overrightarrow{NM}\) và \(\overrightarrow{BC}\). Vì sao có thể nói hai vectơ này cùng phương ?