1. Xét \(\Delta AMN\) và \(\Delta CGN\) có :
AN = CN ( gt )
\(\widehat{N_1}=\widehat{N_2}\) ( đối đỉnh )
NM = NG ( gt )
Vậy \(\Delta AMN=\Delta CGN\) ( c.g.c )
2. Vì \(\Delta AMN=\Delta CGN\) ( cmt ) suy ra \(\widehat{MAN}=\widehat{NCG}\) ( 1 )
Từ ( 1 ) \(\Rightarrow MB\) // \(GC\) ( vị trí so le trong ) ( dpcm )
3. Ta có:
\(AM=BM\left(gt\right)\) và \(AN=CN\left(gt\right)\)
\(\Rightarrow\) MN là đường trung bình của tam giác ABC
\(\Rightarrow MN=\frac{1}{2}BC\) ( định lí 2 về đường trung bình tam giác )