Xét ΔCAB vuông tại C có \(\cos A=\dfrac{AC}{AB}\)
nên \(AB=10:\cos30^0=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
=>\(CB=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
\(AD=\dfrac{AC^2}{AB}=\dfrac{10^2}{\left(\dfrac{20\sqrt{3}}{3}\right)^2}=0.75\left(cm\right)\)
Xét ΔCAB có DE//CB
nên DE/CB=AD/AB
\(\Leftrightarrow DE=\dfrac{0.75}{\dfrac{20\sqrt{3}}{3}}\cdot\dfrac{10\sqrt{3}}{3}=\dfrac{3}{8}\left(cm\right)\)