a) Xét 2 \(\Delta\) \(ADE\) và \(ABC\) có:
\(AD=AB\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\) (vì 2 góc đối đỉnh)
\(AE=AC\left(gt\right)\)
=> \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
=> \(DE=BC\) (2 cạnh tương ứng).
Chúc bạn học tốt!
a) Xét 2 \(\Delta\) \(ADE\) và \(ABC\) có:
\(AD=AB\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\) (vì 2 góc đối đỉnh)
\(AE=AC\left(gt\right)\)
=> \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
=> \(DE=BC\) (2 cạnh tương ứng).
Chúc bạn học tốt!
Cho tam giac ABC vuông tại A, M là trung điểm của BC. Vẽ đoạn thẳng AD vuông góc với AB ( A và C nằm khác phía với AB ), AD = AB. Vẽ đoạn thẳng AE vuông góc với AC ( E và B nằm khác phía với AC ), AE = AC. Biết AM = 6cm. Khi đó DE = ...cm
Colgate: Lời giải nữa nhe, hình càng tốt ~~
Cho tam giác ABC có góc A nhỏ hơn 90 độ . Vẽ ra phía ngoài của tam giác đó hai đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC . Gọi H là trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
Tam giác ABC có 3 góc nhọn, vẽ tia Ax vuông AB. Trên à lấy D sao cho AD=AB (D khác phía đối với AC). Vẽ tia Ay vuông AC. Trên tia Ay lấy E sao cho AE=AC (E khác phía đối với AB). CM:
a) DC=BE
b) DC vuông BE
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Cho tam giác ABC có Â < 90*. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. CMR: MA _|_ BC
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE