Ta có hình vẽ sau:
GT: ΔABC ; \(\widehat{A}\) = 90o ; MB = MC ;
N ϵ tia đối của MA ; MN = MA
KL: a) CN = AB
b) AN = BC
a) Xét ΔABM và ΔCNM có:
MN = MA (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) (đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔABM = ΔCNM (c-g-c)
\(\Rightarrow\) CN = AB (2 cạnh tương ứng) (đpcm)
b) Ta có: \(\widehat{AMN}\) = \(\widehat{M_2}\) + \(\widehat{M_2}\) = 180o (2 góc kề bù)
\(\widehat{CMB}\) = \(\widehat{M_1}\) + \(\widehat{M_3}\) = 180o (2 góc kề bù)
\(\Rightarrow\) \(\widehat{AMN}\) = \(\widehat{CMB}\) = 180o
Xét ΔABC và ΔCNA có:
CN = AB (ý a)
\(\widehat{AMN}\) = \(\widehat{CMB}\) (cm trên)
AC là cạnh chung
\(\Rightarrow\) ΔABC = ΔCNA (c-g-c)
\(\Rightarrow\) AN = BC ( 2 cạnh tương ứng) (đpcm)