Tam giác ABC có AB=AC⇒ΔABCAB=AC⇒ΔABCCân ⇒ABC=ACB=180−202=80⇒ABC=ACB=180−20/2=80
Lại có ΔMBCΔMBCCó
Lấy D trong ΔABC sao cho ΔMBC đều
=>góc DBC=góc DCB=góc ACB-góc DCB=20 độ
Ta có:AB=AC
DB=DC
DO đó: AD là trung trực của BC
mà ΔBAC cân tại A
nên AD là phân giác của góc BAC
=>góc BAD=góc CAD=20/2=10 độ
=>góc ADC=150 độ
Xét ΔCDA và ΔAMC có
CD=AM(=BC)
góc DCA=góc MAC
AC chung
Do đó: ΔCDA=ΔAMC
=>góc ACD=góc CMA=150 độ
=>góc BMC=30 độ