a) Ta có: ΔADH vuông tại H(AH\(\perp\)HD tại H)
nên \(\widehat{DAH}+\widehat{ADH}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DAH}+\widehat{BDA}=90^0\)(1)
Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{KAD}+\widehat{BAD}=90^0\)(2)
Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBAD cân tại B(cmt)
nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)(3)
Từ (1), (2) và (3) suy ra \(\widehat{KAD}=\widehat{HAD}\)(đpcm)
b)
Xét ΔKAD vuông tại K và ΔHAD vuông tại H có
AD chung
\(\widehat{KAD}=\widehat{HAD}\)(cmt)
Do đó: ΔKAD=ΔHAD(cạnh huyền-góc nhọn)
⇒AK=AH(hai cạnh tương ứng)
mà \(AK=\sqrt{7}cm\)
nên \(AH=\sqrt{7}cm\)
Áp dụng định lí Pytago vào ΔAHD vuông tại H, ta được:
\(AD^2=AH^2+HD^2\)
\(\Leftrightarrow AD^2=\left(\sqrt{7}\right)^2+3^2=16\)
hay AD=4(cm)
Vậy: AD=4cm