Luyện tập về ba trường hợp bằng nhau của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn hồng hiên

cho tam giác ABC có góc a bằng 90 độ. gọi M là trung điểm của AC. trên tia đối của tia MB lấy điểm D sao cho MB = MD.

a, chứng minh rằng tam giác ABM bằng tam giác CDM.

b, chứng minh DC vuông góc với AC, từ đó chứng minh AB song song với CD

 c, lấy K là trung điểm của BC .trên tia AK lấy điểm E sao cho K là trung điểm của AE. chứng minh rằng C là trung điểm của DE.

Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 8:43

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>DC\(\perp\)AC

mà AC\(\perp\)AB

nên AB//DC

c: ΔMAB=ΔMCD

=>AB=CD

Xét ΔKAB và ΔKEC có

KA=KE

\(\widehat{AKB}=\widehat{EKC}\)

KB=KC

Do đó: ΔKAB=ΔKEC

=>AB=EC 

ΔKAB=ΔKEC

=>\(\widehat{KAB}=\widehat{KEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

AB//EC

AB//CD

CD,EC có điểm chung là C

Do đó: E,C,D thẳng hàng

AB=EC

AB=CD

Do đó: EC=CD

Ta có: E,C,D thẳng hàng

EC=CD

Do đó: C là trung điểm của ED


Các câu hỏi tương tự
Lâm Phương Thanh
Xem chi tiết
Tiến Phát Nguyễn
Xem chi tiết
Đặng Thúy Ngân
Xem chi tiết
Blink
Xem chi tiết
anh nguyen ngoc minh
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Trọng Việt
Xem chi tiết
Võ Xuân Cường
Xem chi tiết
7/2 Gia Khanh
Xem chi tiết