Câu 1: Cho hình bình hành ABCD, có M và N là trung điểm của AB và CD. Gọi O là giao điểm của AC và BD. C/m: AC, BD, MN đồng quy tại điểm O.
Các bạn giúp mik gấp ak!
Mik cảm ơn!
Mik hứa sẽ ủng hộ nhiệt tình!
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Max của: \(A=\dfrac{1}{a+3}+\dfrac{1}{b+3}+\dfrac{1}{c+3}-\dfrac{1}{3\left(ab+bc+ac\right)}\)
Nhờ các bạn Giúp mk với ạ Mk xin cảm ơn
Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC vuông tại A. Các đường phân giác của góc B, C cắt nhau tại I. Hình chiếu của IB và IC trên BC có độ dài lần lượt là m và n. Tính diện tích tam giác ABC theo m và n