Lời giải:
Lấy điểm $I$ thỏa mãn \(4\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
Do $A,B,C$ cố định nên điểm $I$ cố định.
Khi đó ta có:
\(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=4(\overrightarrow{MI}+\overrightarrow{IA})+(\overrightarrow{MI}+\overrightarrow{IB})+(\overrightarrow{MI}+\overrightarrow{IC})\)
\(=6\overrightarrow{MI}+(4\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC})=6\overrightarrow{MI}+\overrightarrow{0}=6\overrightarrow{MI}\)
Do đó:
\(\overrightarrow{MN}=6\overrightarrow{MI}\Rightarrow M,N,I\) thẳng hàng.
Tức là $MN$ đi qua điểm $I$ cố định.