Cho tam giác ABC nhọn .Tìm min của :
\(T=\sqrt{sin^2A+\dfrac{1}{cos^2B}}+\sqrt{sin^2B+\dfrac{1}{cos^2C}}+\sqrt{sin^2C+\dfrac{1}{cos^2A}}\)
1) Giải phương trình sau: \(\frac{1}{2}sinx=sin\frac{x}{2}.cos^2\frac{x}{2}\) (*)
2) Trung bình cộng của GTLN và GTNN của hàm số y = \(-sin^2x-4sinx+2\).
3) Tìm giá trị của m để phương trình (m + 1)sin2x + 2cos2x = 2m vô nghiệm.
4) Tìm tổng các nghiệm thuộc khoảng (0;101) của phương trình \(sin^4\frac{x}{2}+cos^4\frac{x}{2}=1-2sinx\).
5) Tìm nghiệm thuộc 0 < x < π của phương trình \(sin2x=-\frac{1}{2}\).
6) Tìm nghiệm thuộc 0 ≤ x ≤ 2π của phương trình \(\sqrt{2}cos\left(x+\frac{\pi}{3}\right)=1\).
7) Tìm nghiệm của phương trình sin(x + 17 độ).cos(x - 22 độ) + cos(x + 17 độ).sin(x - 22 độ) = \(\frac{\sqrt{2}}{2}\) thỏa điều kiện x ∈ (0 độ; 90 độ).
8) Cho ΔABC có các góc A, B, C thỏa mãn sinA.sinB.sinC = \(\frac{3\sqrt{3}}{8}\) . Chứng minh ΔABC đều.
Cho tam giác ABC có ba góc với : \(cot\left(\widehat{\dfrac{A}{2}}\right);cot\dfrac{\widehat{B}}{2};cot\left(\widehat{\dfrac{C}{2}}\right)\) theo thứ tự đó lập thành một cấp số cộng. Chứng minh ba cạnh tương ứng theo thứ tự đó cũng tạo thành một cấp số cộng
Cho phương trình \(\frac{\cos x-2\sin x\cos x}{2\cos^2x-\sin x-1}=\sqrt{3}\). Gọi M là điểm biểu diễn cho các nghiệm của phương trình trên đường tròn lượng giác. Tính diện tích tam giác AOM với A là giao của tia Ox với đường tròn lượng giác.
Tìm các giá trị lượng giác, biết:
a) \(cos\alpha=\dfrac{2}{\sqrt{5}}\); \(-\dfrac{\pi}{2}< \alpha< 0\)
b) \(sinx=\dfrac{3}{5};\dfrac{\pi}{2}< x< \pi\)
c) \(tanx=\dfrac{4}{5};-\pi< x< -\dfrac{\pi}{2}\)
d) \(cotx=-\dfrac{3}{4};\dfrac{3\pi}{2}< x< \pi\)
e) \(tanx=\dfrac{4}{5};\pi< x< \dfrac{3\pi}{2}\)
f) \(cosx=\dfrac{4}{5};270^o< x< 360^o\)
g) \(sinx=-\dfrac{3}{5};180^o< x< 270^o\)
cho tam giác ABC vuông cân tại A . M là trung điểm BC , G là trọng tâm tam giác ABM . Đ(7;-2)là điểm nằm trên MC sao cho GA=GD.viết pt AB biết A có hoành độ nhỏ hơn 4. và AG :3x-y-13=0
giải phương trình
\(\sin x\sqrt{1+2\sin x}=\cos2x\)
\(\sin\left(\frac{5x}{2}-\frac{\pi}{4}\right)-\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)=\sqrt{2}\cos\frac{3x}{2}\)
\(3\sqrt{\tan x+1}\left(\sin x+2\cos x\right)=5\left(\sin x+3\cos x\right)\)
\(\sqrt{2}\left(\sin x+\sqrt{3}\cos x\right)=\sqrt{3}\cos2x-\sin2x\)
\(\sin2x\sin4x+2\left(3\sin x-4\sin^2x+1\right)=0\)