$a)$ Vì $MN//EF//BC$ và \(AH\perp BC\)
Theo định lí Ta - lét, ta có: \(\dfrac{MN}{BC}=\dfrac{AK}{AH}=\dfrac{1}{3}\)
$\Rightarrow MN=\dfrac{BC}{3}=\dfrac{15}{3}=5(cm)$
Ta có: $\dfrac{EF}{BC}=\dfrac{2}{3} \Rightarrow EF =\dfrac{2}{3}.15=10(cm)$
$b)$ Ta có: $S_{ABC} = \dfrac{1}{2}AH.BC$
$\Rightarrow AH = \dfrac{2S_{ABC}}{BC}=\dfrac{2.270}{15}=36$
Mà $AI=IK=IH=\dfrac{1}{3}AH = \dfrac{36}{3}=12(cm)$
Vậy $S_{MNEF} = \dfrac{1}{2}(MN+EF).IK = \dfrac{1}{2}(5+10).12=90 (cm^2)$