Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của (O). Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác ADFC là tứ giác nội tiếp. 2) Chứng minh DF || BK. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi E là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh góc MDF= góc MFD và M là tâm đường tròn ngoại tiếp của tam giác DEF.
1: góc ADC=góc AFC=90 độ
=>ADFC nội tiếp