Giả sử AH cắt MN tại I và hình vuông MNPQ có cạnh bằng x \(\Rightarrow MN=IH\)
Vì MN // BC \(\Rightarrow\) tam giác AMN ~ ABC
\(\Rightarrow\dfrac{MN}{BC}=\dfrac{AM}{AB}\) (1)
Xét hai tam giác vuông AMI và ABH có :
\(\widehat{A}\) là góc chung
\(\widehat{AIM}=\widehat{AHB}\)
\(\Rightarrow\) tam giác AMI ~ ABH\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AI}{AH}\) (2)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{MN}{BC}=\dfrac{AI}{AH}\)
Mà AI = AH - IH = AH - MN \(\Rightarrow\dfrac{MN}{15}=\dfrac{10-MN}{10}\Rightarrow2MN=30-3MN\Rightarrow5MN=30\Rightarrow MN=6cm\)Vậy \(MN=NP=PQ=QN=6cm\)