a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
⇒\(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
⇒\(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
Cho tam giác ABC vuông tại A ,BI là đường phân giác (I thuộc AC ) . Kẻ CH vuông góc với đường thẳng BI (H thuộc BI)
a) Chứng minh tam giác ABI đồng dạng với tam giác HCI
b) chứng minh tam giác BHC đồng dạng với tam giác CHI
c)Cho biết AB=6cm , AC=8cm . Tính độ dài các cạnh AI , IC
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI
Cho tam giác ABC vuông tại A , đường cao AH , I là trung điểm của AC , IF vuông góc với BC ( F thuộc BC ) , CE vuông góc với AC ( E là giao điểm của CE với tia IF ) . G, K lần lượt là giao điểm của AH, AE với BI .CM :
a, Tam giác IHE = Tam giác ICE , tính góc IHE
b, Tam giác IHE đồng dạng với tam giác BHA ; tam giác BHI đồng dạng với tam giác AHE
c, AE vuông góc với BI
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB
Cho tam giác ABC vuông tại A, Kẻ đường cao AH ( H thuộc BC )
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Tính độ dài BH, AC biết CH =6,4 cm, AB = 6cm
Cho tam giác ABC vuông tại A, đường cao AH
a) Cm ▲BHA đồng dạng ▲BAC. Từ đó suy ra BA2 = BH.BC
b) Lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Cmr CH.CB=CI.CK
c) Tia BK cắt tia HA tại D. Cmr góc BHK= góc BDC
GIÚP MIK NHANH NHANH MIK ĐAG CẦN GẤP:(((
Cho Tam Giác ABC vuông tại A ó AB= 6cm;Ac =8cm.Kẻ đường cao AH
a,CM:Tam giác ABC và Tam giác HBA đồng dạng với nhau
b,CM:AH2 = HB.HC
c,Tính độ dài AH
Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB
cho tam giác ABC Vuông tại A(AB<AC) Đường cao AH
tia phân giác BE(E thuộc AC) cắt AH tại I
a, tam giác ABH đồng dạng với tam giác CBA
b,AH^2=BH.HC
c,tam giác BIH đồng dạng với tam giác BEA
d,AI=AE