Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC
cho tam giác abc có 3 góc nhọn ,kẻ AH vuông góc với BC . vẽ điểm D và E sao cho AB là đường trung trực của DH và AC là đường trung trực của HE. DE lần lượt cắt AB và AC tại I và K,kẻ DB cắt EC tại G
a)chứng minhHA là tia phân giác góc IHK
b)chứng minh GA là đường trung trục của DE
c)chứng minh góc BAC bằng góc IHB
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a) Tam giác ABD = tam giác EBD từ đó suy ra AD = ED
b) BD là đg trung trực của đoạn thẳng AE và AD < DC
c) Ba điểm E ,D, F thẳng hàng
Câu 1:Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẽ DE vuông góc với BC ( E thuộc BC)a) Chứng minh rằng:AB = BE.b)Chứng minh rằng:DB là phân giác góc ADE.
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại E. Từ E kẻ EH vuông góc BC tại H. a) Chứng minh rằng: ΔABE = ΔHBE b) Chứng minh rằng: BE là đường trung trực của AH c) Gọi giao điểm của AB và EH là K. Xác định dạng của tam giác ECK d) Chứng minh rằng: AH // CK e) Tìm điều kiện của ΔABC để ∠AEB = ∠HEC
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC vuông tại A có AB=9cm, AC:12cm a, Tính độ dài cạnh BC và so sánh các góc của tam giác ABC b, Tia phân giác của học ABC cách AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD c, Gọi E là giao điểm của 2 đường thẳng AH và BA. Kéo dài BD cách EC tại I. CM: BI=EC
cho ΔABC vuông tại A . Đường phân giác BD (D ∈ AC). Kẻ DE ⊥ BC (E ∈ BC)
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh ΔADE cân và BD là trung trực của AE
c) So sánh AD và DC
d) Kẻ AH vuông góc với BC (H ∈ BC), AH cắt BD tại F. Chứng minh: AH // DE và ΔAFD cân
e) Chứng minh AE là tia phân giác của góc AHC