cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho \(\Delta\)ABC vuông tại A, đường cao AH. Biết BH = 9cm, BC = 25cm. Kẻ AK là phân giác \(\widehat{CAH}\) .
a, \(\Delta\) HBA \(\sim\) \(\Delta\) ABC
b, Tính AB, CK, HK
c, Trên AC lấy E sao cho CE= 5cm , trên BC lấy F sao cho CF = 4cm. Chứng minh: CEF vuông
Cho tam giác ABC có AB = 4cm; AC = 5cm; BC = 6cm. Trên tia đối tia AB lấy D sao cho AD = 5cm.
a. Tam giác ABC đồng dạng với tam giác nào?
b. Tính CD.
c. CMR: \(\widehat{BAC}=2\widehat{ACB}\)
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH ( H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E.
a, CMR: \(\Delta BEC\) đồng dạng \(\Delta ADC\). Tính độ dài BE theo m = AB
b, Gọi M là trung điểm BE. CMR: \(\Delta BHM\) đồng dạng \(\Delta BEC\). Tính góc AHM
c, Tia AM cắt BC tại G. CMR: \(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN
cho tam giác abc vuông tại a. ab=15cm, ac=20cm. vẽ tia ax//bc và tia by vuông góc với bc tại b, tia ax cắt by tại d
a, cm tam giác abc đồng dạng tam giác dab
b, tính bc, da, db
c, ab cắt cd tại i. tính diện tích tam giác bic
Cho ΔABC, trên AB lấy D sao cho AD= 1/3 DB. Kẻ DE//BC cắt AC tại E.
a) C/m: ΔADE đồng dạng ΔABC.
b) Tính hệ số đồng dạng.
Cho ΔABC vuông tại A có đường cao AH. Đường phân giác của \(\widehat{ABC}\) cắt AH và AC lần lượt tại E và D.
a, CMR: ΔABC ~ ΔHBA và AB2 = BA.BH
b, Biết AB = 9cm; BC = 15cm. Tính AD và CD
c, Gọi I là trung điểm của DE. CMR: \(\widehat{BIH}=\widehat{ACB}\)