Giải:
Xét \(\Delta AMB,\Delta AMC\) có:
\(AB=AC\left(gt\right)\)
AM: cạnh chung
\(BM=MC\left(=\frac{1}{2}BC\right)\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c-c-c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( góc t/ứng )
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\left(đpcm\right)\)
Vậy...
xét \(\Delta AMBvà\Delta AMCcó\)
AM là cạnh chung
AB=AC(gt)
MB=MC(M là trung điểm của BC)
=> \(\Delta AMB=\Delta AMC\)(ccc)
=>góc AMB= góc AMC ( 2 góc tương ứng) mà 2 góc này là 2 góc kề bù => góc AMB= góc AMC= 180o : 2 = 90o
=>\(AM\perp BC\)
Tam giác ABC cân tại A (AB = AC) có AM là đường trung tuyến (M là trung điểm của BC)
=> AM là đường cao của tam giác ABC cân tại A
=> AM _I_ BC