Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE
c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH
Cho tam giác ABC có các đường phân giác trong BE và CF cắt nhau tại I. Gọi M , N lần lượt là hình chiếu vuông góc của A trên BE và CF. Tia AM cắt BC tại D . Cho AB = 12cm , AC = 15cm và BC = 18cm, tính độ dài đoạn thẳng MN .
Cảm ơn mng nhiều ạ!
Bài 4 :Trên một cạnh của một góc có đỉnh là A, đặt đoạn thẳng AE = 3cm, AC = 8cm, trên cạnh thứ hai của góc đó đặt các đoạn thẳng AD = 4cm, AF = 6cm
a) Hai tam giác ABC và AEF có đồng dạng không? vì sao?
b) Gọi I là giao điểm của CD và EF. Tính tỉ số của 2 tam giác IDF và IEC
Cho tam giác ABC vuông tại A có AB=15cm, AC=20cm. Vẽ \(AH\perp BC\) tại H.
a) Tính BC, AH
b) Vẽ BD là phân giác của \(\widehat{ABC}\left(D\in AC\right)\) Tính DC
c) Gọi I là giao điểm của AH và BD. Chứng minh AI.AD = IH.DC
d) Trên cạnh HC lấy E sao cho HE=HA, qua E vẽ đường thẳng \(\perp BC\) cắt AC ở M, qua C vẽ đường thẳng \(\perp BC\) cắt tia phân giác của \(\widehat{MEC}\) tại F. Chứng minh H,M,F thẳng hàng
cho tam giac ABC. Trung tuyến BM cắt phân giác CD của góc C tại P (D thuộc AB; M thuộc AC). Gọi E là điểm đối xứng của B qua M.
a. tứ giác ABCE là hình gì? Tại sao?
b. cm PC/PD = AB/BD
c. Tính PC/PD - AC/BC