Tam giác ABC có các đường phân giác cắt nhau tại I, G là trọng tâm tam giác ABC. Biết BC=AB+AC/2. Chứng minh: IG song song với BC
Cho tam giác ABC có AB=8cm, AC=12cm, BC=10cm. Gọi I là giao điểm các đường phân giác, G là trọng tâm tam giác ABC.
a) CM: IG//BC
b) Tính IG
Cho tam giác ABC , AB=24cm , BC=30cm, AC=36cm . gọi I là giao điểm của các đường phân giác. Gọi G là trọng tâm của tam giác .
a, Cm: IG//BC
b, Tính độ dài IG?
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
cho tam giác nhọn ABC, các đường cao AD và BE cắt nhau tại H. Vẽ các đường trung trực OM và ON của các cạnh BC, CA (O là giao điểm của hai đường trung trực, M và N lần lượt là trung điểm của các cạnh BC và CA). Gọi G là trọng tâm của tam giác ABC. Tính tỉ số các diện tích của hai tam giác AHG và AOG
cho tam giác ABC có BC bằng trung bình cộng của AB và AC; gọi I , G lần lượt là giao điểm của 3 đường phân giác và 3 đường trung tuyến. Cmr IG // BC
Tam giác ABC có AB = 6 cm , AC = 12 cm , BC = 9 cm . Gọi I là giao điểm các đường phân giác , G là trọng tâm của tam giác .
a) Chứng minh rằng IG song song với BC .
b) Tính độ dài IG .
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)