Cho tam giác ABC có AB=6cm ,AC=4,5cm,BC=7,5cm
a) Chứng minh ABC là tam giác vuông
b) Tính góc B,góc C và đường cao AH
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB,AC lần lượt là P và Q .Chứng minh PQ = AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. a) Viết tỉ số lượng giác góc B của AABC. b) Cho AB=6cm, AC = 8cm . Tính BC,AH c ) Chứng minh: AE.AB = AF AC
Cho tam giác nhọn ABC, đường cao AD (D thuộc BC). Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Chứng minh rằng:
1. Hai tam giác AMN và ACB đồng dạng.
2. MN=AD.sin BAC
Giúp mình câu 2 với ạ, mình đang cần gấp. Mình cảm ơn ạ
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Bài toán 4. Cho tam giác nhọn ABC có BAC = 60° và AB > AC, các đường cao BE,CF (E,F lần lượt thuộc CA, AB). 1. Chứng minh rằng SABC= AB.AC.căn 3/4 và BC^2 = AB^2+AC^2 – AB AC. 2. Chứng minh rằng EF = BC/2và SBCEF = 3SAEF. 3. Gọi M,N lần lượt là trung điểm của BC,EF. Tia phân giác của BAC cắt MN tại I. Chứng minh rằng IM = 2IN và MFI= 30°. Giúp mình câu 2 và câu 3 với ạ mình cảm ơn
Cho tam giác ABC có AB = 6cm, AC = 4,5cm. BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào ?
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC=8cm, BH=2cm. a) Tính độ dài các đoạn thẳng AB, AC, AH b) Trên cạnh AC lấy điểm K (K khác A, K khác C), gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC từ đó suy ra AB = BC. sin góc BDH
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC
a, Cho AB=9, BH=5.4. Tính AC,BC,AH,EF ( đã làm được)
b, Chứng minh \(\dfrac{1}{EF^2}\)=\(\dfrac{1}{AB^2}\)+\(\dfrac{1}{AC^2}\)(đã làm được)
c, Chứng minh EA.EB+FA.FC=HB.HC( cần trợ giúp)