2)Cho tam giác ABC , AB<AC. Lấy điểm M là trung điểm của BC. Từ M kẻ một đường thẳng vuông góc với tia phân giác của BAC tại N, cắt AB tại E, cắt AC tại F. CMR:
a) AE=AF
b)CF=BE
c) AE=\(\frac{AC+AB}{2}\)
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.
cho tam giác ABC có AB <AC . Gọi M là trung điểm của BC , Từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E , cắt tia AC tại F . CMR :
a) AE=AF
b)BE=CF
c)AE=\(\frac{AB+AC}{2}\)
Cho tam giác ABC nhọn có AB < AC, tia phân giác của góc A cắt BC tại D. Trên AC lấy điểm E sao cho AB = AE.
a.Chứng minh AD là tia phân giác của góc BDE
b.Trên tia đối của tia BA lấy F sao cho BF = CE, AD cắt FC tại H.Chứng minh AD vuông góc với FC
c.Chứng minh BE song song với FC
d.Chứng minh ba điểm F, D, E thẳng hàng
( vẽ hình nha)
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
Cho tam giác ABC vuông tại A và AB nhỏ hơn AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Vẽ tia phân giác góc BAC cắt BC tại E.
a) Chứng minh tam giác AEB = tam giác AED
b) Gọi F là giao điểm của DE và tia AB. Chứng minh tam giác EBF = tam giác EDC
c) Gọi M là trung điểm của BD, chứng minh tam giác AMB = tam giác AMD
d) Chứng minh 3 điểm A, M, E thẳng hàng.