a: Xét tứ giác ABDC có
M là trug điểm chung của AD và BC
nên ABDC là hình bình hành
Suy ra: DC//AB
c: Xét ΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuôg tại A
a: Xét tứ giác ABDC có
M là trug điểm chung của AD và BC
nên ABDC là hình bình hành
Suy ra: DC//AB
c: Xét ΔABC có
AM là đường trung tuyến
AM=BC/2
Do đó: ΔABC vuôg tại A
Cho tam giác ABC vẽ điểm M là trung điểm BC trên tia đối của tia MA lấy điểm D sao cho MA=MD
a) CM tam giác ABM= tam giác DCM
b) CM AB//DC
c) kẻ BE vuông góc với AM CF vuông góc với DM CM M là trung điểm của đoạn thẳng Ef
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
Cho tam giác ABC vuông tại A (AB< AC) có trung tuyến AM .Vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F.
a / Chứng minh rằng: Tứ giác AEMF là hình chữ nhật?
b / Gọi N là điểm đối xứng của M qua F. Chứng minh tứ giác ABMN là hình bình hành ? c/ Vẽ AH vuông góc với BC tại H. Chứng minh rằng: Tứ giác HMFE là hình thang cân? d/ Gọi I là trung điểm của NC. Chứng minh I, F, E thẳng hàng.
câu 40: Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC, nối AM. Từ điểm M vẽ tia Mt // AC. Từ B vẽ đường vuông góc với BC cắt Mt tại N, nối AN. Trong hình vẽ có tất cả bao nhiêu cặp tam giác vuông bằng nhau?
A. 5. B. 10. C. 8. D.6.
Cho tam giác ABC (AB nhỏ hơn AC ). Trên tia AB lấy D sao cho AD=AC . kẻ Phân giác AM của GÓC BAC (M thuộc DC ). a) CM DK= CK b) kẻ BH vuông góc với DC (H thuộc BC ) CM HB// AM
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE