\(a,\left\{{}\begin{matrix}AB=AC\\BD=DC\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.c.c\right)\\ b,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{BAD}=\widehat{CAD}\\ c,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{ADB}=\widehat{ADC}\\ \text{Mà }\widehat{ADB}+\widehat{ADC}=180^0\\ \Rightarrow\widehat{ADC}=\widehat{ADB}=90^0\\ \Rightarrow AD\perp BC\)