a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
=>AM=BC/2=5cm
b: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
nên ADME là hình chữ nhật
c: Xét tứ giác DECB có DE//BC
nên DECB là hình thang
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
=>AM=BC/2=5cm
b: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
nên ADME là hình chữ nhật
c: Xét tứ giác DECB có DE//BC
nên DECB là hình thang
Cho tam giác ABC vuông tại A , trung tuyến AM .
a) Cho AB=6cm,AC=8cm . Tính độ dài AM .
b) Kẻ MD vuông góc với AB , ME vuông góc với AC . Tứ giác ADME là hình gì? Vì sao?
c) Tứ giác DECB là hình gì? Vì sao?
d) Gọi H , I lần lượt là trung điểm của BM và CM . Chứng minh rằng: DH=EI .
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ADME là hình vuông?.
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Gọi AM là trung tuyết của tam giác ABC. Kẻ MD vuông góc AB, kẻ ME vuông góc AC. a) Chứng minh tam giác ABC vuông. b) Tính độ dài AM c) Tính độ dài DE d) Chứng minh tứ giác BDEC là hình thang e) Chứng minh tứ giác BDEM là hình bình hành f) Chứng minh tứ giác ADME là hình chữ nhật g) Khi AB = AC tứ giác ADME là hình gì ?
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Gọi AM là trung tuyết của tam giác ABC. Kẻ MD vuông góc AB, kẻ ME vuông góc AC.
a) Chứng minh tam giác ABC vuông.
b) Tính độ dài AM
c) Tính độ dài DE
d) Chứng minh tứ giác BDEC là hình thang
e) Chứng minh tứ giác BDEM là hình bình hành
f) Chứng minh tứ giác ADME là hình chữ nhật
g) Khi AB = AC tứ giác ADME là hình gì ?
Cho ΔABC có AB = 6cm, AC = 8cm, BC = 10cm. Gọi AM là trung tuyến của tam giác
a) Tính độ dài AM
b) Kẻ MD vuông góc với AB, ME vuông góc với AC. Tứ giác ADME có dạng đặc biệt nào?
c) Tứ giác DECB có dạng đặc biệt nào?
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho tam giác ABC vuông tại A . Gọi M là trung điểm của BC . Vẽ MF⊥ AB ( F thuộc AB ) , ME ⊥ AC ( E thuộc AC ) a, giả sử AC = 8cm , AB= 6cm. Tính BC và trung tuyến AM b, chứng minh rằng : tứ giác AEMF là hình chữ nhật C , gọi điểm N đối xứng với điểm M qua điểm F. Chứng minh tứ giác AMBN là hình thoi d,gọi I là giao điểm hai đường chéo 2 hình chữ nhật AEMF , đường thẳng BI cắt đường thẳng EM tại điểm K và gọi điểm H là hình chiếu của điểm K xuống đường thẳng NP, chứng minh tam giác AMN cân,
Câu 8: Cho tam giác ABC vuông tại A , có AB = 6cm , AC = 8cm, AM là
đường trung tuyến ứng với cạnh BC . Độ dài của cạnh AM là :
A. 10cm
B. 9cm
C. 5cm
D. 8cm
Cho tam giác ABC vuông tại A có đường trung tuyến AM. Từ M kẻ vuông góc với AB tại E, vuoing góc với AC tại F. Gọi G là trọng tâm của tam giác ABC CM: ( AG + BC)÷2> BG
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC .Từ M vẽ MD vuông góc với AB ,ME vuông góc với AC
a) chứng minh D là trung điểm của AB, tứ giác BDEMlà hình bình hành
b) vẽ AD vuông góc vs BC tại H . Gọi K là giao điểm của AH và DE. Đường thẳng DH cắt BK tại J và I là trung điểm của MK .
chứng minh J là trọng tâm tam giác ABH và 3 điểm C,I.J thẳng hàng