Xét ΔBDA và ΔBAC có
\(\dfrac{BD}{BA}=\dfrac{BA}{BC}\)
\(\widehat{B}\) chung
Do đó: ΔBDA~ΔBAC
=>\(\dfrac{AD}{AC}=\dfrac{BD}{BA}\)
=>\(\dfrac{AD}{5}=\dfrac{4}{6}=\dfrac{2}{3}\)
=>\(AD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
Xét ΔBDA và ΔBAC có
\(\dfrac{BD}{BA}=\dfrac{BA}{BC}\)
\(\widehat{B}\) chung
Do đó: ΔBDA~ΔBAC
=>\(\dfrac{AD}{AC}=\dfrac{BD}{BA}\)
=>\(\dfrac{AD}{5}=\dfrac{4}{6}=\dfrac{2}{3}\)
=>\(AD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
Cho tam giác ABC có AB=4cm, AC=5cm, BC=6cm. CMR: góc A=2 lần góc C
Gọi tam giác ABC có AB bằng 3 cm, AC= 5cm ,BC = 7cm . Đường phân giác góc a cắt cạnh BC ở D tính BD và DC
1
a, vẽ tam giác ABC có góc BAC=50 độ ,AB=5cm;AC=7,5 cm
b,lấy trên các cạnh AB,AC lần lượt hai điểm D,E sao cho AD=3cm;AE=2cm.Hai tam giác AED và ABC có đồng dạng với nhau k?Vì sao?
a, vẽ tam giác ABC có góc BAC=50 độ ,AB=5cm;AC=7,5 cm
b,lấy trên các cạnh AB,AC lần lượt hai điểm D,E sao cho AD=3cm;AE=2cm.Hai tam giác AED và ABC có đồng dạng với nhau k?Vì sao?
Cho tam giác ABC có AB = 18cm, AC = 27cm, BC = 30cm. Gọi D là trung điểm
của AB, điểm E thuộc cạnh AC sao cho AE = 6cm
a) Chứng minh: ∆AED ∆ABC
b) Tính độ dài DE
cho góc xOy( góc xOy≠180 độ).Trên tia Ox lấy hai điểm A và B sao cho OA=4cm,OB=12cm>trên tia Oy lấy hai điểm C và D sao cho OC=6cm,OD=8cm
a,c/m 2 tam giác OCB và OAD đồng dạng
b,Gọi giao điểm của các cạnh AD và BC là I,chứng minh rằng hai tam giác AIB và ICD có các góc bằng nhau từng đôi một
cho góc xOy( góc xOy≠180 độ).Trên tia Ox lấy hai điểm A và B sao cho OA=4cm,OB=12cm>trên tia Oy lấy hai điểm C và D sao cho OC=6cm,OD=8cm
a,c/m 2 tam giác OCB và OAD đồng dạng
b,Gọi giao điểm của các cạnh AD và BC là I,chứng minh rằng hai tam giác AIB và ICD có các góc bằng nhau từng đôi một