Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB (K thuộc AB). Kẻ BD vuông góc với tia AE (D thuộc tia AE). C/M:
a) AC = AK và AE vuông góc CK.
b) EA = EB
c) EB > AC.
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
Bài 11: Cho tam giác ABC vuông ở C có góc A bằng 600 . Tia phân giác của góc BAC cắt BC ở E. Kẻ EK AB ( K AB). Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh: a) AC = AK và AE CKb) KA = KB c) EB > ACd) Ba đường thẳng AC, BD, KE cùng đi qua một điểm.
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Câu 1: Cho tam giác ABC nhọn. Gọi D,E là chân đường cao vẽ từ B,C xuống AC, AB. C/m a) góc ABC = ACE,
b) BD + CE < AB + AC
Câu 2: Cho tam giác ABC . D là điểm nằm giữa B, C
c/m AD< AB + AC + BC : 2
***Hic Hic, mụi ngừi giúp mình với ặ
Cho ABC vuông tại B có 60o A , phân giác góc BAC cắt BC ở D. Kẻ DH vuông góc với AC ( H thuộc AC) a. Chứng minh ABD AHD b. Chứng minh HA HC c. So sánh DC và AB d. Gọi I là giao điểm của HD và AB, lấy E là trung điểm của CI. Chứng minh A,D,E thẳng hàng
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI