Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Thùy Trang

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm (O;R). Vẽ hai đường cao BD và CE của tam giác ABC cắt nhau tại H. DE cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB).
a) C/m tứ giác BEDC nội tiếp, xác định tâm
b) C/m BH.DH = EH.HC
c) C/m tam giác APQ cân tại A và AP2 = AE.AB
d) Gọi S1 là diện tích tam giác APQ, S2 là diện tích tam giác ABC. Giả sử: \(\dfrac{S_1}{S_2}=\dfrac{PQ}{2BC}\). Tính BC theo R

Neet
10 tháng 8 2017 lúc 21:50

A B C D E P Q H O K M N

d) Gọi OA cắt ED ở K.Dễ dàng chứng minh \(AK\perp ED\)( đã cm trong các câu trên ). Kẻ AH cắt BC ở M

\(\dfrac{S_{APQ}}{S_{ABC}}=\dfrac{AK.PQ}{AM.BC}=\dfrac{PQ}{2BC}\Rightarrow AM=2AK\)

\(\Delta AED\)~\(\Delta ACB\)(c.g.c),AK,AM là 2 đường cao tương ứng

\(\Rightarrow\dfrac{C_{AED}}{S_{ABC}}=\dfrac{AE}{AC}=\dfrac{AD}{AB}=\dfrac{ED}{BC}=\dfrac{1}{2}\)

Để ý rằng \(\Delta ABD\) vuông ở D có AB=2AD \(\Rightarrow\widehat{BAC}=60^o\)và dễ thấy tam giác ABC phải cân ---> tam giác ABC đều .

Kẻ \(ON\perp BC\) ,ta tính được \(BC=\sqrt{3}R\)


Các câu hỏi tương tự
Hà Tiểu Quỳnh
Xem chi tiết
Phương anh Vũ
Xem chi tiết
Thanh Bảo
Xem chi tiết
Người Đơn Côi
Xem chi tiết
LuKenz
Xem chi tiết
Linh Đỗ Hà
Xem chi tiết
Tttc
Xem chi tiết
Thanh Hân
Xem chi tiết
Thanh Hân
Xem chi tiết