Cho tam giác ABC nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA (Vẽ hình).
a) Chứng minh tam giác AMB bằng tam giác DMC và AB song song với CD.
b) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh BE = CD.
c) Vẽ đường thẳng vuông góc với AB tại B cắt đoạn thẳng MD tại I. Trên tia MA lấy điểm F sao cho MF = MI. Chứng minh CF vuông góc với AB.
Cho tam giác ABC a) Cho biết góc A= 80 độ, góc B= 60 độ. So sánh các cạnh của tam giác ABC b) Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. Chứng minh rằng: AB=CD và AB + AC > AD c) Gọi N là trung điểm của đoạn thẳng CD và K là giao điểm của AN và BC. Chứng minh rằng: BC = 3CK
Cho tam giác ABC có:AB=AC kẻ AM là tia phân giác của góc BAC.a.Chứng minh tam giác ABM=tam giác ACM.b.Trên tia đối của tia MA lấy D sao cho MA=MD,chứng minh AB=CD,AB//CD.c,Gọi I,K lần lượt là trung điểm của AB và CD,chứng minh I,M,K thẳng hàng
Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy D sao cho MD=MA. Biết AC>AB. CMR:a. Tam giác AMD= DMC.b. CD< AC.c. Góc CAM< góc BAM.d, Góc AMB< góc AMC.
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC có: AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. Chứng minh rằng:
a, tam giác ABM = TAM GIÁCDCM
b, GÓC BAM = GÓC MDC
c, AB // DC
MỌI NGƯỜI GIÚP MIK VS NHÉ