a: ΔMBD cân tại M
nên góc MBD=góc MDB=(180 độ-góc DMB)/2
=góc BMA/2
góc AMN=góc BMN=góc BMA/2
=>góc BMN=góc MBD
=>BD//MN
b: CM vuông góc MD
MN//BD
=>CM vuông góc BD tại I
mà ΔCBD cân tại C
nên I là trung điểm của BD
a: ΔMBD cân tại M
nên góc MBD=góc MDB=(180 độ-góc DMB)/2
=góc BMA/2
góc AMN=góc BMN=góc BMA/2
=>góc BMN=góc MBD
=>BD//MN
b: CM vuông góc MD
MN//BD
=>CM vuông góc BD tại I
mà ΔCBD cân tại C
nên I là trung điểm của BD
Cho \(\)ABC cân tại C nội tiếp đường tròn (O). Gọi M là một điểm trên cung BC, trên tia đối của tia MA lấy điểm D sao cho MD = MB. Tia CO cắt đường tròn tại N.
a) CM: BD//MN
b) CM cắt BD ở I. CM: I là t /điểm của BD
c) CMR: KHi M di chuyển trên cung BC thì điểm D chuyển động trên một cung tròn cố định
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Tia BD và tia CE cắt đường tròn (O) lần lượt tại M, N (M khác B, N khác C)a) Chứng minh bốn điểm B, C, D, E cùng nằm trên một đường tròn.b) Chứng minh DE // MNc) Đường tròn đường kính AH cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Tia KH cắt đường tròn (O) tại điểm thứ hai là Q. Tứ giác BHCQ là hình gì? Tại sao?d) Gọi giao điểm của HQ và BC là I. Chứng minh OI/MN > 1/4
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
Cho đường tròn đường kính BC cố định. Trên tia đối của BC lấy điểm A (khác B). Kẻ tiếp tuyến AM với đường tròn tâm (O), M là tiếp điểm. Qua A kẻ đường thẳng d vuông góc với AC, tia CM cắt d tại D.
a) Chứng minh tứ ADMB là tứ giác nội tiếp
b) Kẻ tia Mx sao cho MB là phân giác của góc AMx. Chứng minh AB.AC=AH.AO
Cho đường tròn (O) và một dây BC cố định không đi qua O. Trên tia đối của tia BC lấy một điểm A bất kì. Vẽ các tiếp tuyến AM, AN tới (O) (M, N là các tiếp điểm). MN cắt các đưòng AO và BC lần lượt ở H và K. Gọi I là trung điểm của BC
a, Chứng minh: AH.AO = AB.AC = MA2MA2
b, Chứng minh tứ giác BHOC nội tiếp
c, Vẽ dây MP song song với BC. Chứng minh N, I, P thẳng hàng
d, Khi A di động trên tia đôi của tia BC, chứng minh trọng tâm tam giác MBC chạy trên một đường tròn cố định
cho tam giác ABC nội tiếp đường tròn (O) , BD và CE lần lượt là các tia phân giác xủa góc ABC , ACB ( D , E thuộc (O) ) cắt nhau tại I . DE cắt AB , AC tại M, N . Chứng minh Tam giác AMN cân và tam giác AID cân
( vẽ hình giúp em với ạ )
Cho nửa đường tròn (O;R),đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn OC lấy điểm E (E khác O,C). Tia AE cắt đường tròn (O) tại M. Tiếp tuyến tại M của đường tròn (O) cắt OC ở D. Gọi K là giao điểm của BM và OC
a) Chứng minh tứ giác OBME nội tiếp 1 đường tròn.
b) Chứng minh tam giác MDE cân và BM.BK không phụ thuộc vào vị trí của điểm E.
c)Tìm vị trí của điểm E để MB=1/2MA
Cho đường tròn (O;R) có đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa O và B). Trên tia đối của tia AB lấy điểm S, SC cắt (O;R) tại điểm thứ hai là M.
a) Chứng minh: SC.MA = SA.BC
b) Gọi H là giao điểm của MA và BC; K là giao điểm của MD và AB. Chứng minh BKMH là tứ giác nội tiếp và HK // CD.
c) Chứng minh: OK.OS = R2
Cho đường tròn (O) đường kính AB.Trên tia tiếp tuyến của (O) tại A, lấy điểm M khác A. Đường thẳng MB cắt đường tròn (O) tại C. Qua A kẻ đường thẳng vuông góc với OM tại I, đường thẳng này cắt đường tròn (O) tại D.
a) Chứng minh MD là tiếp tuyến của (O)
b) Chứng minh ∆MAC vuông tại C .
c) Chứng minh rằng góc MCD = góc MDB
d) Tiếp tuyến với đường tròn ngoại tiếp ∆AMD tại điểm A cắt (O) ở P. E là điểm
đối xứng với A qua D. Chứng minh rằng bốn điểm A, M, E, P cùng thuộc một
đường tròn.
Mình đang cần gấp ạ , thks mn