chứng minh
a) vì AH là đường trung tuyến của góc A
⇒H là trung điểm của BC
⇒HB =HC
b) xét ΔMHB và ΔMHC, ta có:
-góc BMH= góc CMH =90 độ
-HB=HC
-góc MHB=góc NHC( đối đỉnh )
⇒ΔMHB =ΔMHC( cạnh huyền -góc nhọn)
⇒HM=HN(2 cạnh tương ứng)
chứng minh
a) vì AH là đường trung tuyến của góc A
⇒H là trung điểm của BC
⇒HB =HC
b) xét ΔMHB và ΔMHC, ta có:
-góc BMH= góc CMH =90 độ
-HB=HC
-góc MHB=góc NHC( đối đỉnh )
⇒ΔMHB =ΔMHC( cạnh huyền -góc nhọn)
⇒HM=HN(2 cạnh tương ứng)
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Cho ∆ABC cân tại A, kẻ AH ⊥ BC tại H.
a) Chứng minh rằng ∆ABH = ∆ACH
b) Giả sử AB = 8cm; BC = 6cm. Tính AH?
c) Kẻ HM ⊥ AB tại M, HN ⊥ AC tại N. Chứng minh MN // BC
d) Gọi I là trung điểm của MN, chứng minh rằng A, I, H thẳng hàng.
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
Cho tam giác ABC cân tại A (BAC <90°), Kẻ BI vuông góc với AC tại 1. Trên cạnh BC lấy điểm M bất kỳ (M khác B và C). Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB, AC, BI. 1) Chứng minh rằng tam giác DBM = tam giác FMB. 2) Cho BC = 10cm, CI = 6cm. Tính tổng MD + ME. 3) Trên tia đối của tia CA lấy điểm K sao cho CK = EI. Chứng minh BC đi qua trung điểm của đoạn thẳng DK.
Cho tam giác ABC vuông tại A có góc ABC=60độ.
a)Tính số đo góc ACB và so sánh độ dài hai cạnh AB, AC
b) Gọi M là trung điểm AC. Kẻ đường thẳng vuông góc với AC tại M, đường thẳng này cắt BC tại N, Chứng minh tam giác AMN= tam giác CMN
c)Chứng minh tam giác ABN là tam giác đều
d)Gọi G là giao điểm của AN và BM, Chứng minh BC=6.GN
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
I: Cho tam giac ABC co goc B = goc C , tia phan giac goc A cắt Bc tại H kẻ HM vuông góc với AB , HE vuông góc với AC , M thuộc AB , E thuộc AC
a) C/m : AM=AE,HB=HC
b) AH vuông góc BC
c) ME song song BC
đ) Từ B kẻ đường vuông góc AB , từ C kẻ đường vuông AC , cắt nhau tại I . C/m : A H I thẳng hàng
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK