Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O thuộc cạnh BC và tiếp xúc với cạnh AB, AC lần lượt tại D và E. Gọi I là điểm chuyển động trên cung nhỏ DE ( I khác D, E). Tiếp tuyến của đường tròn tại I cắt cạnh AB, AC lần lượt tại M và N.
a. Chứng minh rằng: chu vi tam giác AMN không đổi
b. Chứng minh: \(BC^2=4BM.CN\)
c. Xác định vị trí điểm I trên cung nhỏ DE để tam giác AMN có diện tích lớn nhất