a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)
Mà \(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
Xét hai tam giác ABD và ACE có:
\(\widehat{BAD}=\widehat{CAE}\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{ABD}=\widehat{ACE}\) (cmt)
Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)
Suy ra: BD = CE (hai cạnh tương ứng)
b) Xét hai tam giác BHD và CKE có:
BD = CE (cmt)
\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))
Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).