Giải:
Vì \(AM=AN\) nên \(\Delta AMN\) cân tại A
\(\Rightarrow\widehat{M_1}=\widehat{N_1}\)
Mà \(\widehat{M_1}+\widehat{N_1}+\widehat{A}=180^o\)
\(\Rightarrow2\widehat{N_1}=180^o-\widehat{A}\)
\(\Rightarrow\widehat{N_1}=\frac{180^o-\widehat{A}}{2}\) (1)
Vì t/g ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow2\widehat{C}=180^o-\widehat{A}\)
\(\Rightarrow\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{N_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí đồng vị nên MN // BC ( đpcm )
Vậy...
Vì \(\Delta\)ABC cân tại A nên \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)
Ta có: AM = AN => \(\Delta\)AMN cân tại A
=> \(\widehat{AMN}\) = \(\widehat{ANM}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{AMN}\) + \(\widehat{ANM}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AMN}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AMN}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị nên MN // BC.
Lên lớp 8 chỉ cần 3,4 dòng :
Ta có : \(AM/AB=AN/AC\)=> MN//BC ( ĐL Talét đảo)
Vậy ...