Bài 4: Tính chất ba đường trung tuyến của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Huyền

Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt BC tại D

a. Chứng minh: tam giác ADB = tam giác ADC

b. Chứng minh: AD là đường trung trực của BC

c. Kẻ DK vuông AB tại K, DE vuông AC tại E. Chứng minh tam giác DKE cân

d. Chứng minh : KE //BC

Nguyễn Lê Phước Thịnh
24 tháng 5 2020 lúc 20:33

a) Xét ΔADB và ΔADC có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔADB=ΔADC(c-g-c)

b) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔADB=ΔADC(cmt)

⇒DB=DC(hai cạnh tương ứng)

hay D nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AD là đường trung trực của BC(đpcm)

c) Xét ΔKBD vuông tại K và ΔECD vuông tại E có

BD=CD(cmt)

\(\widehat{KBD}=\widehat{ECD}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔKBD=ΔECD(cạnh huyền-góc nhọn)

⇒DK=DE(hai cạnh tương ứng)

Xét ΔDKE có DK=DE(cmt)

nên ΔDKE cân tại D(định nghĩa tam giác cân)

d) Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(3)

Xét ΔKAD vuông tại K và ΔEAD vuông tại E có

AD là cạnh chung

DK=DE(cmt)

Do đó: ΔKAD=ΔEAD(cạnh huyền-cạnh góc vuông)

⇒AK=AE(hai cạnh tương ứng)

Xét ΔAKE có AK=AE(cmt)

nên ΔAKE cân tại A(định nghĩa tam giác cân)

\(\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKE cân tại A)(4)

Từ (3) và (4) suy ra \(\widehat{AKE}=\widehat{ABC}\)

\(\widehat{AKE}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên KE//BC(dấu hiệu nhận biết hai đường thẳng song song)


Các câu hỏi tương tự
Nguyễn Tuấn Anh
Xem chi tiết
Sara Han
Xem chi tiết
Ex VBCB
Xem chi tiết
Lynn ;-;
Xem chi tiết
Đặng Thị Diễm Quỳnh
Xem chi tiết
Nguyenthile Le
Xem chi tiết
phái Đặng
Xem chi tiết
. . .
Xem chi tiết
Lê Trung Kiên
Xem chi tiết