a) \(OA\perp BC\)
=> \(BC\) // \(AD\)
=> \(OA\perp AD\) => AD là tiếp tuyến tại A của đường tròn.
b) OM cắt AC tại trung điểm của AC (\(OM\perp CA\) sử dụng đường khính và dây đường tròn)
Ta có: ABCD là hình bình hành.
BD cắt CA tại trung điểm CA
=> 3 đường thẳng AC, BD, OM đồng quy.