a, \(\Delta ABH\) và \(\Delta ACH\) vuông tại \(H\) có:
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\widehat{B}=\widehat{C}\left(\Delta ABC-cân-tại-A\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
b, Ta có: \(\Delta ABH=\Delta ACH\left(cmt\right)\)
\(\Rightarrow\widehat{A1}=\widehat{A2}\left(2-góc-tương-ứng\right)\)
\(\Rightarrow AH\) là tia phân giác của \(\widehat{BAC}\)
Link ne:https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+abc+c%C3%A2n+t%E1%BA%A1i+a+.+k%E1%BA%BB+ah+vu%C3%B4ng+g%C3%B3c+bc+(+h+thu%E1%BB%99c+bc+)+a.+ch%E1%BB%A9ng+minh+:+tan+gi%C3%A1c+AHB+=+tam+gi%C3%A1c+AHCb.+gi%E1%BA%A3+s%E1%BB%AD+ab=ac+=5cm+,+bc=8cm+.+t%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+ah+c.+tr%C3%AAn+tia+%C4%91%E1%BB%93i+c%E1%BB%A7a+tia+ah+l%E1%BA%A5y+%C4%91i%E1%BB%85m+m+sao+cho+hm=ha+.+ch%E1%BB%A9ng+minh+tam+gi%C3%A1c+abm+c%C3%A2n+d.+ch%E1%BB%A9ng+minh+bm+//+ac+&id=383238