G là trọng tâm của \(\Delta ABC\) nên G thuộc đường trung tuyến AM (1)
Trong tam giác cân, đường trung phân giác của góc ở đỉnh đồng thời là đường trung tuyến nên I cũng thuộc đường trung tuyến AM. (2)
Từ (1) và (2) suy ra A, G, I thẳng hàng.
G là trọng tâm của \(\Delta ABC\) nên G thuộc đường trung tuyến AM (1)
Trong tam giác cân, đường trung phân giác của góc ở đỉnh đồng thời là đường trung tuyến nên I cũng thuộc đường trung tuyến AM. (2)
Từ (1) và (2) suy ra A, G, I thẳng hàng.
Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh điểm A, G, I thẳng hàng ?
Cho tam. giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD BC (D BC).
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh ABC = DBE.
c) Kẻ DH MC (H MC) và AK ME (K ME). Gọi N là giao điểm của hai tia DH và AK.
Tam giác ABC cân ở A. 2 tia phân giác trong của góc B và góc C cắt nhau ở I. Gọi M là trung điểm của BC. Chứng minh A, I, M thẳng hàng
Cho tam giác ABC có M là trung điểm của BC và tia AM là tia phân giác của góc A. Cho G là trong tâm của tam giác.
a) Chứng minh tam giác ABC cân tại A?
b) Cho AG = 4cm, BC = 16cm. Tính độ dài các đoạn thẳng AM, AB?
c) Kẻ BK vuông góc với AC tại K, BK cắt AM tại H. Chứng minh CH vuông góc với AB
Pls giúp mình mai thì rùi ạ:((
Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh EF = BE + CF
Bài 4: Cho tam giác ABC , đường trung tuyến AM. E là một điểm thuộc tia đối của tia MA sao cho ME = AM/3. Qua B kẻ đường thẳng song song với CE, đường thẳng này cắt AM, AC lần lượt tại I và D. Chứng minh;
a) I là trọng tâm của tam giác ABC.
b) D là trung điểm của AC.
Cho tam giác ABC. Các tia phân giác các góc A và C cắt nhau ở I. Các đường phân giác các góc ngoài tại đỉnh A và C cắt nhau ở K. Chứng minh rằng 3 điểm B, I, K thẳng hàng.
cho tam giác ABC cân tại A . gọi G là trọng tâm của tam giác . I là giao điểm các phân giác của tam giác . chứng minh: ba điểm A, G,I thẳng hàng
1) Cho tam giác ABC có . Gọi I là giao điểm các đường phân giác trong của tam giác. Gọi M, N theo thứ tự là trung điểm của AB, AC. Tính số đo độ của tổng: